
Exploring Monte Carlo Tree Search for Join Order Selection

Ji Zhang§ζ , Kun Wan§, Sebastian Schelterζ , Ke Zhou§
§Huazhong University of Science and Technology, ζNew York University

{jizhang,k.wan,k.zhou}@hust.edu.cn,sebastian.schelter@nyu.edu

1 INTRODUCTION
Query optimization remains a difficult problem, and existing data-
base management systems (DBMSs) often miss good execution
plans [1]. Identifying an efficient join order is key to achieving
good performance in database systems. A primary challenge in
join order selection is enumerating a set of candidate orderings
and identifying the most effective ordering [2]. Searching in larger
candidate spaces increases the potential of finding well working
plans, but also increases the cost of query optimization. In this
paper, we explore the benefits of Monte Carlo Tree Search (MCTS)
for the join order selection problem.

MCTS [3] is a search method usually used in games to predict
the set of moves that should be taken to reach a final winning
solution with high likelihood. It simulates the gamemany times and
tries to predict the most promising move based on the simulation
results. For example, in the game of Go [4], MCTS simulates the
game several times to select the actions and orders which have the
highest probability to win. Inspired by this method, we explore the
application of MCTS to join order selection. Our main idea is to
simulate many possible join orders, and to apply MCTS to select
the order to execute with the highest estimated performance. We
design a neural network to predict the query execution time of a
given plan, to which we refer as Order Value Network (OVN). MCTS
leverages this network to score candidate query plans.

2 PROPOSED APPROACH
Figure 1 gives an overview of our proposed approach, which in-
cludes two encoding methods (SQL-encoding and Plan-encoding),
two neural networks (Order Value Network and Decision Network),
and the proposed optimizer which applies MCTS.
SQL-encoding encodes the table and attribute information contained
in the SQL query. Similar to previous work [5], the representation
of each query consists of two components: the first component
encodes the join graph of the query in an adjacency matrix as
shown in Figure 1. A one in the matrix corresponds to the join
predicate connecting two tables. The second component is a simple
“one-hot encoding” of the attributes involved in any SQL predicate.
Plan-encoding represents a partial execution plan. The difference
to SQL-encoding is that we represent the join order instead of just
the join graph in the encoding matrix (in contrast to [2]). We show
two encoding examples in Figure 1.
Optimization with MCTS consists of two parts: the first part is the
Order Value Network (OVN) which is trained based on histori-
cal query plans and their corresponding runtime using a standard
convolutional neural network. The second part is the MCTS. We
construct the Monte Carlo Tree for join order selection by simulat-
ing different join orders, where we apply the OVN to score their
performance, and use the “Upper Confidence bounds applied to

Figure 1: Overview of our proposed approach which in-
cludes two encoding methods (SQL-encoding and Plan-
encoding), two trained neural networks (Order Value Net-
work (OVN) and Decision Network (DeN)), and an optimizer
which applies Monte Carlo Tree Search (MCTS).

Trees (UCT)” algorithm to balance exploration and exploitation.
Note that the path from each child node to the root node in the tree
represents a complete join order.

3 PRELIMINARY RESULTS
We investigate the performance of our method via the Join Order
Benchmark (JOB), a set of queries used in previous assessments of
query optimizers [1]. We configure Postgres to execute the gener-
ated query plans. In initial attempts, we applied our MCTS-based
optimizer to replace the optimizer in PostgreSQL. Although our
approach achieved an overall better performance than the optimizer
in Postgres, we found that some queries optimized by our method
performed much worse than if they would have been optimized
with the optimizer in Postgres. This attributes to the uncertainty
of the UCT algorithm in our method. In order to alleviate this sit-
uation, we train another neural network to which refers to as the
Decision Network (DeN, shown in Figure 1) to choose between
our optimizer and the Postgres optimizer for a given query. DeN is
learned from a labeled dataset of historical executions times of the
optimizer in PostgreSQL and our MCTS-based optimizer.

We present preliminary experiments that indicate that ourmethod
can generate join orders with lower runtimes than the ones gener-
ated by the PostgreSQL optimizer and the state-of-the-art method
Neo [6]. The results are shown in Figure 2, where the y-axis de-
notes the execution time (including the MCTS search time) and the
x-axis of the right figure shows the test queries ordered by their
execution time. Our approach is able to achieve not only better
overall performance but performs well for individual queries, and



NEDBDay’20, January 27th, 2020, Boston, US Zhang, et al.

Figure 2: Performance comparison between the optimizer of PostgreSQL, Neo andMCTS. TheMCTSmethod achieved the best
overall performance.

gains a remarkable improvement for slow queries (queries with
large execution time).

Our method still performs worse than the optimizer in Post-
greSQL on a set of fast queries, which we need to investigate to
further improve the overall performance. Additionally, we aim to
further reduce the MCTS search time.

REFERENCES
[1] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. How good are query optimizers, really? Proc. VLDB Endow.,
9(3):204–215, 2015.

[2] Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join
order enumeration. aiDM’18. Association for Computing Machinery, 2018.

[3] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen)
Donkers, editors, Computers and Games, pages 72–83, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[4] David Silver, Aja Huang, and et. al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[5] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
Learning state representations for query optimization with deep reinforcement
learning. In Proceedings of the Second Workshop on Data Management for End-To-
End Machine Learning, DEEM’18. Association for Computing Machinery, 2018.

[6] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned query
optimizer. Proc. VLDB Endow., 12(11):1705–1718, July 2019.


	1 Introduction
	2 Proposed approach
	3 Preliminary Results
	References

