
Tier-Scrubbing: An Adaptive and Tiered Disk Scrubbing
Scheme with Improved MTTD and Reduced Cost

Abstract—Sector errors are a common type of error in modern disks. A
sector error that occurs during I/O operations might cause inaccessibility
of an application. Even worse, it could result in permanent data loss if the
data is being reconstructed, and thereby severely affects the reliability of
a storage system. Many disk scrubbing schemes have been proposed to
solve this problem. However, existing approaches have several limitations.
First, schemes use machine learning (ML) to predict latent sector errors
(LSEs), but only leverage a single snapshot of training data to make a
prediction, and thereby ignore sequential dependencies between different
statuses of a hard disk over time. Second, they accelerate the scrubbing
at a fixed rate based on the results of a binary classification model, which
may result in unnecessary increases in scrubbing cost. Third, they naively
accelerate the scrubbing of the full disk which has LSEs based on the
predictive results, but neglect partial high-risk areas (the areas that have
a higher probability of encountering LSEs). Lastly, they do not employ
strategies to scrub these high-risk areas in advance based on I/O accesses
patterns, in order to further increase the efficiency of scrubbing.

We address these challenges by designing a Tier-Scrubbing (TS)
scheme that combines a Long Short-Term Memory (LSTM) based
Adaptive Scrubbing Rate Controller (ASRC), a module focusing on
sector error locality to locate high-risk areas in a disk, and a piggyback
scrubbing strategy to improve the reliability of a storage system. Our
evaluation results on realistic datasets and workloads from two real world
data centers demonstrate that TS can simultaneously decrease the Mean-
Time-To-Detection (MTTD) by about 80% and the scrubbing cost by
20%, compared to a state-of-the-art scrubbing scheme.

I. INTRODUCTION

Hard disks are widely used as primary storage devices in modern
data centers. A disk failure can fall into two categories: device level
(i.e., a complete disk failure) and block level (i.e., a partial disk
failure) [1]. A complete disk failure can lead to temporary data loss
and thus system unavailability. It can furthermore result in permanent
data loss if the lost data cannot be recovered by provisioned data
protection schemes (e.g., replication and erasure codes [2], [3]). The
failures of disks at a block level (referred to as latent sector errors
(LSEs)) also impacts data reliability and availability. According to
our statistics on disks from a real world data center, about 35% of
disk failures are caused by LSEs.

Compared with traditional passive fault tolerance techniques like
EC (Erasure Codes, a solution for complete disk failures), RAID
(Redundant Arrays of Independent Disks, a solution for complete
disk failures) [4], and intra-disk redundancy (a solution for LSEs),
proactive failure prediction aims to ensure the reliability and avail-
ability of large scale storage systems by taking preventive measures
before failures actually happen.

Nowadays, researchers have proposed machine learning (ML)-
based methods to predict complete disk failures [5]–[9] based on self-
monitoring, analysis and reporting technology (S.M.A.R.T) data [10],
which achieved good predictive performance. However, these ap-
proaches still suffer from a 1% false positive rate (FPR, the proportion
of good disks that are falsely predicted as failed ones), which makes
it difficult to put them into production in real data centers. Even
though 1% sounds small, it will result in high costs in a modern
large scale data centers with hundreds of millions of disks, because
all the wrongly predicted disks will have to be replaced. As LSE
problems become more prominent, many researchers have focused

on the prediction of LSEs using ML, based on S.M.A.R.T data [1],
[11]. Although the predictive results (about 10% FPR) are not on
par with the results for complete disk failures, these methods do not
force the data center operator to replace the complete disk in case of
(potentially incorrectly) predicted LSEs; instead only apply simple
verification operations (i.e., disk scrubbing, etc.) have to be applied.
The reason is that a sector error is much easier to verify than a
complete disk failure. Mahdisoltani et al. [11] used a random forest-
based approach [12] to predict LSEs, with a scheme that accelerates
the scrubbing with a fixed rate when LSEs are predicted. Jiang et
al. [1] proposed the Scrub Unleveling (SU ) scheme, (again based
on random forests) to improve the cost-efficiency of disk scrubbing.
Instead of trading off scrubbing cost and data reliability, they aim to
achieve a low scrubbing cost and high data reliability at the same
time in a storage system.

However, these studies have several limitations. From the perspec-
tive of predictive models, (1) these methods take a single snapshot
of S.M.A.R.T attributes as training data for prediction, without
considering the sequential dependency between different statuses of
a hard disk over time (which was observed by many researches [9],
[13]); (2) these models only apply binary classification to the status
of a sector, i.e., they predict whether there will be LSEs within the
next few days or not, and cannot quantify the temporal distance to
the actual sector error occurrence. Therefore, they only accelerate the
scrubbing at a fixed rate (i.e., ×2), which can result in unnecessary
scrubbing cost (as we discuss in detail in Section II-B1). From the
perspective of a scrubbing strategy, (3) the existing approaches simply
uniformly increase the scrubbing rate for the full disk without giving
special consideration to high-risk areas (the areas that have a higher
probability of encountering LSEs in a disk), which could be more
important to improve the reliability of the storage system; (4) they
also do not explore how to scrub these high-risk areas in advance
based on I/O accesses, in order to further accelerate the efficiency of
disk scrubbing.

In this paper, we propose a novel scrubbing scheme called Tier-
Scrubbing (TS). TS is an adaptive and effective scrubbing scheme
that combines an ML-based adaptive scrubbing rate controller, a
module focusing on sector error locality to locate high-risk areas
in a disk, and a piggyback scrubbing strategy based on I/O accesses.
Our goal is to achieve a lower MTTD accompanied by a decrease in
the scrubbing cost, in order to increase the reliability of a large scale
storage system (compared to a state-of-the-art scrubbing scheme).

We make the following contributions:
• Solve the limitation (1) and (2): at the disk level, we propose

an Adaptive Scrubbing Rate Controller (ASRC) based on the
LSTM algorithm [14] to not only predict LSE disks and non-
LSE disks, but also to quantify the sector error risk. We model
sequential dependencies within the training data, and accelerate
the scrubbing of these LSE disks at an adaptive (non-fixed) rate
based on the predictive results (Section II-B1).

• Solve the limitation (3): we explore the locality of sector errors
by analyzing a large number of disks. Based on our findings,



we further study the partial high-risk areas of the LSE disks
and focus on them so as to increase the reliability of the storage
system at the sector level (Section II-B2).

• Solve the limitation (4): for identified high-risk areas, we
propose a piggyback scrubbing strategy (at the level of I/O
operations). We opportunistically optimize the scrubbing strat-
egy to further improve the efficiency of scrubbing based on I/O
accesses (Section II-B3).

• We experimentally evaluate our proposed scrubbing scheme on
datasets and workloads from two real world data centers. We
find that our scheme can achieve a higher reliability with a lower
scrubbing cost, compared to a state-of-the-art scrubbing scheme,
in all cases (Section III-B2).

II. OVERVIEW OF TIER-SCRUBBING

In this section, we first provide an overview of our proposed
disk scrubbing scheme TS in Section II-A, and then introduce the
approach on different levels in Section II-B.

A. Scheme Overview

Figure 1 provides an overview of our proposed scrubbing scheme
TS which combines an LSTM-based adaptive scrubbing rate con-
troller (ASRC), a module focusing on sector error locality to locate
high-risk areas in a disk, and a piggyback scrubbing strategy based
on I/O accesses. Disk scrubbing aims to find LSEs as early as
possible, and to perform sector repair or reallocation in advance
before a sector error is encountered by an application. In large data
centers, different disks have different probabilities of sector errors,
which disqualifies a fixed scrubbing rate for all disks. We propose an
Adaptive Scrubbing Rate Controller (ASRC) that contains an LSTM-
based model (LSTMs [15] are a special kind of recurrent neural
networks, capable of learning long-term dependencies) to predict the
sector risk degree (e.g., in range of 0-7) for all disks in the data center,
based on a series of observed S.M.A.R.T data. We subsequently
leverage our risk prediction to determine an adaptive disk scrubbing
rate at the disk level.

We refer to disks predicted as LSE disks (having a risk greater
than 0) with higher (lower) risk degrees as high-risk (low-risk) disks
(the lowest degree is 1 and the highest is 7). These disks employ
different scrubbing rates based on different sector risk degrees. Disks
predicted as non-LSE disks (risk degree 0) perform the scrubbing
analogous to the scheme SU (i.e., decreasing the fixed scrubbing
rate). To the best of our knowledge, we are the first to propose an
LSTM-based approach to predict the disk sector risk degree rather
than just modeling this task as a binary classification problem.

In general, sequential disk scrubbing operates in a sequential
manner to scrub sectors without specific priorities. Our experimental
results show that the probability of the occurrence of sector errors in
a single disk is not evenly distributed, but has peaks around certain
localities. The probability that a new sector error occurs around a
previously observed sector errors of a disk is much higher than in
other areas. Therefore, we focus on these high-risk areas of LSE disks
so as to scrub these areas with a higher priority at the sector level.
Note that we scrub the disk with an adaptive accelerated scrubbing
rate for a full disk, if the predicted LSE disk has no previously
observed sector errors.

We furthermore propose a piggyback scrubbing strategy to scrub
high-risk areas at the level of I/O operations. When the application
I/O operations access these areas, we execute scrubbing (i.e., a pig-
gyback read operation, as detailed in Section II-B3) in the untouched
fragmented sectors. Note that we perform sequential scrubbing with

Fig. 1. The overall scheme of TS which combines an LSTM-based adaptive
scrubbing rate controller (ASRC), a module focusing on sector error locality
to locate high-risk areas in a disk, and a piggyback scrubbing strategy based
on I/O accesses.

an adaptive accelerated rate (the scheme SU applies the sequential
scrubbing with a fixed accelerated rate) on the LSE disk, and that
the piggyback scrubbing strategy is only executed if the application
I/O operations access the high-risk areas of the LSE disk.

B. Approach

TS is a scrubbing mechanism to address the challenges described
in Section I. It predicts the sector risk degree of an LSE disk, locates
the high-risk areas, and opportunistically optimizes the scrubbing
strategy with the goal to decrease the MTTD and scrubbing cost.
In the following, we describe TS in detail on three different levels:
disk, sector and I/O operations.

1) ASRC at Disk Level: The goal of ASRC is to build a model to
predict the sector risk degree of a disk and accelerate the scrubbing of
LSE disks with an adaptive rate. Figure 2 illustrates the architecture
of ASRC, which comprises of three parts: the LSTM-based predictor,
the scrubbing rate controller and a sample pool.

LSTM-based predictor. Almost all hard disk drives provide
S.M.A.R.T data, which directly or indirectly reflects the health of
disks and even contains some statistical information. Each S.M.A.R.T
attribute entry is a quintuplet (ID, Normalized, Raw, Threshold,
Worst). Not all elements in this tuple are commonly used. Most
research leverages the first three elements (ID, Normalized, and
Raw) [1], [5], [11]. For a fair comparison, we also use these three el-
ements from our collected datasets. In addition, many researchers [1],
[16]–[18] apply classical ML methods like SVM, Decision Tree,
Random Forest or Logistic Regression based on the S.M.A.R.T
attributes as training samples. However, some research has shown
that the S.M.A.R.T signal of the disk changes dynamically with a
certain trend [9], [13], thus the current state of the disk may depend
on a long-term historical trend. In contrast to all the aforementioned
works, we apply an LSTM-based predictor to incorporate sequential
information when predicting the sector risk degree of a disk. LSTMs
have been successfully applied to a variety of applications, including
text sentiment classification [19] and multi-language text classifica-
tion [20].

We designed an N -to-1 LSTM model showed in the first part
of Figure 2 (where N denotes the number of input neurons) which
consists of an input layer I , three hidden layers L, two dense layers
M and an output layer D. The data which we feed to the network is
comprised of a vector I(t) that represents the S.M.A.R.T attributes at
time t. In contrast to traditional neural networks, the LSTM operates
over sequences of input vectors. This structure is able to capture the
historical context of health statuses and makes LSTMs suitable for



Fig. 2. The architecture of ASRC which contains an LSTM-based predictor,
a scrubbing rate controller and a sample pool.

tasks related to sequential prediction. The output of the hidden layer
at time t is L(t), and it maintains an internal representation of the
history of S.M.A.R.T attributes. The output of the network at time t is
D(t), which is a vector (the length of the vector is equal to the range
of possible degrees) that represents the sector risk degrees (the lowest
degree is 0 and the highest is 7) of the disk. We employ a softmax
output to guarantee that D(t) is a proper probability distribution
over the risk degrees. We choose the corresponding risk degree with
the highest probability in the output. Note that we consider a disk
predicted to be 0 as a non-LSE disk. Our new predictor is able to
both predict whether a disk will have a sector error or not (a binary
classification) and the sector risk degree (multiclass classification)
using sequential information. We apply the tanh activation function
to the outputs of hidden layers, and train our network to minimize
the cross entropy [21] between observed and predicted samples (the
standard loss for multiclass classification problems).

Sample Pool. Our sample pool consists of collected S.M.A.R.T data
and the corresponding labels showed in the third part of Figure 2. We
collect the S.M.A.R.T data of each disk in the data center every day,
but the scrubbing is issued once every scrubbing period (analogous
to the scheme SU ). The S.M.A.R.T data we collected is recorded as
a vector, I(t) = {at1, at2, at3, ..., atn}, where n is the number of
attributes (we refer to Section III-A1 for the detailed attributes that
we use). In order to have a fair comparison with the scheme SU and
the pragmatic baseline of scanning the entire disk drive once every
two weeks [11], [22], we also set the scrubbing period to 14 days.
Before we present our own data labeling method, we quickly review
the methods applied in existing work [1], [11] and illustrate them in
part one on the top of Figure 3. For a disk with an observed sector
error, they label all samples in a period of two weeks (one scrubbing
period) before the occurrence of the actual sector error with 1, and
label the non-LSE samples with 0. The disadvantage of this labeling
method is that all the samples labeled as 1 are treated the same even
though they have different time distances to the actual sector error
occurrence. For example, a disk might predicted as 1 even though it
is 11 days away from having an actual sector error. As a result, the
disk will be exposed to accelerated scrubbing by a given fixed factor
(i.e, ×2) and this disk scrubbing might be completed within 14/2 = 7
days. However, in this period, no sector error actually occurs, so this
approach would have introduced unnecessary additional scrubbing
cost. In order to decrease the unnecessary scrubbing cost, we propose
a new data labeling method, as shown in part two on the bottom of
Figure 3. We introduce different sector risk degrees, ranging from 1

Fig. 3. The different data labelling methods. The part one on the top of this
figure describes the data labeling method in existing work [1], [11], while the
part two on the bottom of this figure describes our new data labeling method.

to 7 for the samples, based on their time distance to the actual sector
error occurrence. The higher the degree, the higher the risk of sector
errors (e.g., the closer we are to the error occurrence). Note that all
samples are labeled with 0 for error-free disks.

Scrubbing Rate Controller. The purpose of our scrubbing rate
controller is to set an adaptive scrubbing rate for a disk based on the
predicted sector risk degree showed in the second part of Figure 2.
The ideal situation would be that a sector error is immediately found
after occurrence by the scrubbing. We therefore set an adaptive
scrubbing rate for a disk predicted as having LSEs to ensure that the
actual sector error has a chance to be found during the subsequent
scrubbing period. Since we set the maximum accelerated scrubbing
rate to a factor of 2 (resulting in an accelerated scrubbing period of
7 days) in our real world system, we label all samples from 7 to 0
days before the actual sector error occurrence with the same highest
degree 7 showed in the second part of in Figure 3. For the labels 1 to
6, the adaptive scrubbing acceleration factor is calculated as follows:

Xm(t) =
b P
P−Dm(t)

· 10c
10

(1)

where m denotes the number of disks, P is the default scrubbing
period (i.e., 14 days), and Dm(t) refers to the predicted sector risk
degree of disk m at time t. Note that the purpose of the Floor
operation bc in Equation 1 is to increase the already accelerated
scrubbing period slightly, and to ensure that the actual sector error
has a chance to be found during the subsequent scrubbing period. For
example, if a disk is predicted to have a risk degree of 3, the scrubbing
acceleration factor is 1.3, and the scrubbing rate controller will issue
a scrubbing request to complete the scrubbing operation of this disk
within 11.7 days (calculated by Equation 1). After completing the
disk scrubbing, the controller will record the information about when
the sector error occurred.

2) Locate High-risk Areas at Sector Level: The probability that
a sector error occurs in certain local areas of a disk is different from
that in other areas. The question is how to locate the high-risk areas in
a disk for which we have already observed historical sector errors. We
apply four different disk models from company F1 (one of the largest
social network companies in the world), and explore the cumulative
sector error distribution probability in different continuous high-risk
areas (sectors around the failed sector, as illustrated in Figure 4). Note

1Note that we anonymize the company’s name due to the double blind
review policy.



Fig. 4. Illustration of a high-risk area in a disk with a failed sector. The size
of a high-risk area denotes the number of sectors around the failed sector in
one disk.

that all disks we used in this experiment have historical sector errors,
and that the sector mentioned in our paper is usually a physical sector
of 4KB as in a real world data center. The results of our experiments
are plotted in Figure 5. The x-axis shows the size of the high-risk
area and the y-axis denotes the cumulative sector error probability.
For most disk models, the probability that a new sector error occurs
near an existing error within a high-risk area of size 107 is about
80%. We denote this phenomenon as locality of sector errors. In
other words, the new sector error is correlated with existing errors,
and there is a high probability that it appears in the vicinity of an
existing error in the same disk. We set the size of the high-risk area
to 107 sectors (as explained in Section III-B2).

Fig. 5. The cumulative probability that a new sector error occurs near an
existing error within differently sized high-risk areas. M-1, M-2, M-C and
M-D represent four different disk models from company F.

3) Piggyback Scrubbing at the Level of I/O Operations: The
next question we address is how to opportunistically optimize the
scrubbing strategy to accelerate the scrubbing in high-risk areas of
an LSE disk. Part one on the top of Figure 6 illustrates examples
of our piggyback scrubbing strategy, while part two on the bottom
shows the differences to the sequential scrubbing strategy. We refer
to the time of an I/O request as I/O_TIME, the time between I/Os
requests as I/O_INTERVAL and denote the remaining untouched
sectors as FRAGMENTED_SECTOR. After application I/O operations
access the high-risk areas, the disk head returns to the scrubbing
area to scrub, under a sequential scrubbing strategy. In contrast, once
the application I/O operations access the high-risk areas, our scheme
immediately scrubs the fragmented sectors untouched by the I/O
operations, and only then resumes sequential scrubbing. This method,
which can scrub the sectors in high-risk areas in advance coupled with
application I/O operations, is refered to by us as piggyback scrubbing
strategy. Furthermore, in this case, the disk head just needs to seek
within a tiny area after conducting I/O operations. It is worthy to note
that we perform sequential scrubbing with an adaptive accelerated
rate (the scheme SU uses the sequential scrubbing with a fixed
accelerated rate) on the entire LSE disk, and that the piggyback
scrubbing strategy is only executed when application I/O operations
access the high-risk areas. Although the piggyback operation will
incur a certain scrubbing cost, it will ultimately reduce the cost
of sequential scrubbing because we reduce the frequency of head
movement for the fragmented sectors, which will have been scrubbed

Fig. 6. Part one on the top describes gives an example of piggyback scrubbing;
part two on the bottom illustrates the difference between piggyback and
sequential scrubbing. Piggyback scrubbing strategy scrubs sectors in high-risk
areas in advance, and reduces the frequency of head movement compared to
the sequential scrubbing strategy.

by our piggyback strategy. Therefore, our strategy can not only scrub
the high-risk areas earlier (with a big impact on the MTTD), but
will also decrease the overall scrubbing cost (see Section III-B2 for
details).

For a fair comparison, we use the same evaluation metrics as the
scrub unleveling scheme SU from previous work [1]. The main idea
of this method is to accelerate the scrubbing rate by a fixed factor
X(> 1) if a sector error is predicted, and otherwise decelerate the
scrubbing rate by a factor Y (< 1). We refer to the resulting MTTD
and scrubbing cost of SU as MTTDsu and Costsu. The metrics
are calculated as follows:

MTTDsu=
1

X2r
TPsu+ 1

Y 2r
FNsu

P
(2)

Costsu=T (PPsuXr + PNsuY r) (3)

where r is the rate at which a drive is being scrubbed, T is the
time span of sequential scrubbing in the scheme SU , TP (FP ) is
the number of disks correctly (and incorrectly) predicted as having
LSEs, TN (FN ) is the number of disks correctly (and incorrectly)
predicted as not having LSEs, with P = TP+FN , PP = TP+FP ,
PN = FN + TN . In our scheme TS, we adaptively accelerate
the scrubbing rate by the adaptive factor Xa for all the LSE disks,
after the sector risk degree prediction. Next, we verify disks that have
historical sector errors by executing the piggyback scrubbing strategy
in the high-risk areas. We calculate the MTTD and scrubbing cost of
our scheme TS (refered to as MTTDts and Costts) as follows:

MTTDts =
( 1
Xa2r
−t)δTPh(ts)+

(1−δ)TPh(ts)

Xa2r
+
TPnh(ts)

Xa2r
+ 1
Y2r
FNts

P

=

1
Xa2r

TPts+ 1
Y2r
FNts− tδTPh(ts)
P

(4)

Costts = T ′(FPtsXar+PNtsY r)+(T ′+∆T )TPtsXar (5)

where t is the scrubbing time in advance based on our piggyback
scrubbing strategy. TPh(ts) (TPnh(ts)) are the numbers of disks
which are correctly predicted as LSE ones with (without) historical
sector errors, where TPts = TPh(ts) +TPnh(ts). δ is the proportion
of the high-risk areas of the entire disk and ∆T is the additional
scrubbing time incurred by piggybacking. Note that all these numbers
are related to the high-risk areas discussed in Section II-B2. The
larger the high-risk areas are, the larger δ and ∆T will be. Note



that the T ′ in our scheme is smaller than the T in Equation 3
because our piggyback scrubbing strategy reduces the frequency of
head movement in sequential scrubbing compared to the scheme SU .

III. EXPERIMENTAL EVALUATION

In this section, we evaluate our scheme TS against the SU scheme
with respect to four evaluation metrics.

A. Methodology

1) Datasets: We use S.M.A.R.T datasets from two real world data
centers for evaluation. One is the publicly available dataset from
‘Backblaze’ 2 (we use the same disk models as [1] for a fair compar-
ison), which spans a period of 50 months. The second proprietary
dataset has been collected by company F and spans 26 months.
Table I gives an overview of the summary statistics of these two
datasets. Analogous to [11], we declare a sector error to occur when
the raw value of the 5th S.M.A.R.T attribute “Reallocated Sectors
Count” increases (which indicates the total number of reallocated
sectors). We conduct experiments using three real world workloads
from company F and denote them as W-A, W-B and W-C.

TABLE I
SUMMARY STATISTICS OF THE TWO EVALUATION DATASETS

Data center Model State NO. Drives NO. Samples

Backblaze
ST4000DM000(M-A) Non-LSEs 37,006 12,433,874

LSEs 396 9,258

ST8000DM002(M-B) Non-LSEs 11,253 3,557,212
LSEs 338 9,808

F
WDC-A(M-C) Non-LSEs 5,742 96,490,231

LSEs 165 2,668,800

WDC-B(M-D) Non-LSEs 12,932 231,555,830
LSEs 419 8,676,916

TABLE II
THE SMART ATTRIBUTES FOR OUR EVALUATIONS

#ID S.M.A.R.T Attribute Name Attribute type
001 Raw Read Error Rate Normalized
003 Spin-Up Time Normalized
004 Start/Stop Count Raw
005 Reallocated Sectors Count Raw
007 Seek Error Rate Normalized
009 Power-On Hours Normalized
010 Spin Retry Count Normalized
012 Power Cycle Count Raw
187 Reported Uncorrectable Errors Normalized
194 Temperature Celsius Normalized
197 Current Pending Sector Count Raw
198 Offline Uncorrectable Sector Count Raw

2) Experiment Setup: As shown in Table I, the original datasets
contain more samples of non-LSE disks than of LSE disks, which is
a situation referred to as an imbalanced dataset in the ML field. We
apply a common technique called majority class under-sampling [23]
to under-sample the majority class, which results in different ratios
of LSE to non-LSE samples ranging from 1:1 to 1:50. We split
the datasets into 70% training data and 30% testing data for our
experiments, analogous to [1]. Furthermore, we obtain all results via
cross-validation [24] to decrease the variability of the predictions.
Note that our method uses the same S.M.A.R.T attributes as shown
in Table II. Since different S.M.A.R.T attributes have different output
ranges, (which might lead to different impacts on the predictive
model), we normalize the range of all S.M.A.R.T attributes using
min-max normalization, a common preprocessing technology in ML:
xnorm = x−xmin

xmax−xmin
, where x is the original value of a S.M.A.R.T

2https://www.backblaze.com/b2/hard-drive-test-data.html

attribute, xmax and xmin are the maximum and minimum value of
the attribute in the training set, respectively. Note that we tried other
normalization methods (e.g., z-score), but achieved the best results
with min-max normalization.

3) Evaluation Metrics: We use four metrics to report the results.
AUC (Area under the receiver operating characteristic curve) is
commonly used metric for evaluating a binary classification model.
Accuracy is commonly used for evaluating a multiclass classification
model. MTTD and scrubbing cost are used for estimating the
reliability and efficient of our scheme.

AUC. We use the AUC value under the ROC curve (receiver operating
characteristic) to evaluate the binary classification performance (to
distinguish LSE disks from non-LSE disks) of our predictor in the
ASRC. ROC is a curve plotting the False Detection Rate (FDR, also
called recall rate) against the False Positive Rate (FPR) where FDR
is on the y-axis and FPR is on the x-axis. FDR is the proportion of
LSE disks that are correctly predicted, while FPR is the proportion
of non-LSE disks that are falsely predicted as LSE disks. AUC is the
area under this curve. Therefore, a higher the AUC means the model
is better at distinguishing LSE disks and non-LSE disks.

Accuracy. We use the metric classification accuracy to evaluate
the multiclass classification performance (identifying the sector risk
degree of an LSE disk) of the predictor in the ASRC. It captures the
proportion of the sector risk degrees that are correctly predicted. The
higher the accuracy is, the better the predictor is.

Improvement in MTTD & Cost. We measure the ratio of improve-
ment in MTTD and scrubbing cost as follows:

Mr =
MTTDts
MTTDsu

(The lower, the better) (6)

Cr =
Costts
Costsu

(The lower, the better) (7)

where Mr is related to the predictive performance of the ASRC and
δ, and the ratio of improvement in scrubbing cost Cr is related to
the predictive performance of the ASRC and ∆T , which we can
conclude from Equation 2 to 5.

B. Experimental Results

In this section, we first show the predictive results of ASRC, and
then analyze the MTTD and scrubbing cost with different sizes of
high-risk areas respectively.

TABLE III
THE RESULTS OF AUC & ACCURACY. OUR PREDICTOR ACHIEVES BETTER

PREDICTION QUALITY IN ALL CASES (BINARY CLASSIFICATION (HIGHER
AUC) AS WELL AS MULTICLASS CLASSIFICATION (HIGHER ACCURACY))

Data center Model Method Metric Predictive Results

Backblaze

M-A
TS / SU AUC 0.92 / 0.87

TS
Accuracy (0) 97.6%

Accuracy (1-7) 93.3%

M-B
TS / SU AUC 0.86 / 0.79

TS
Accuracy (0) 94.4%

Accuracy (1-7) 92.1%

F

M-A
TS / SU AUC 0.77 / 0.65

TS
Accuracy (0) 90.7%

Accuracy (1-7) 89.9%

M-B
TS / SU AUC 0.75 / 0.64

TS
Accuracy (0) 88.6%

Accuracy (1-7) 85.8%

1) ASRC: Next, we conduct experiments to investigate the AUC of
TS and SU as well as the predictive accuracy at different risk degrees
using four disk models from two real world data centers. The results
in Table III show that our predictor achieves a higher AUC than SU in
all cases. We attribute this to the fact that our LSTM-based predictor



benefits from modeling the temporal and sequential dependencies.
Due to the class imbalance between the non-LSE (degree 0) disks
and LSE (degree 1-7) disks, we report the accuracy separately in
Table III. Our predictor also achieves good predictive performance at
different risk degrees which is important for determining an adaptive
disk scrubbing rate at the disk level.

2) Scrubbing Cost and MTTD: Figures 7(a) & 7(b) show the ratio
of improvement in scrubbing cost and MTTD under different sizes of
high-risk areas using three real world workloads W-A, W-B and W-C.
The only difference between the dotted lines and the solid lines is that
the results of the dotted lines only use the binary classification results
for fixed rate scrubbing acceleration, while the solid lines use the
multiple classification results for adaptive rate scrubbing acceleration.
In general, our scheme achieves lower MTTD and scrubbing cost
than the scheme SU in all cases (Cr and Mr are all smaller than
1 in the solid lines). Moreover, the results of the solid lines achieve
better performance than the dotted ones, which demonstrates that the
predictor we designed in ASRC for the sector risk degree is more
efficient than just predicting whether the disk is an LSE disk or not.

We briefly summarize additional findings for certain settings from
these two figures. (1) Not applying the piggyback scrubbing
strategy. Setting the high-risk area size to 0 means only using
the predictor’s results to accelerate scrubbing without using our
piggyback scrubbing strategy. In that case, the ratio of the im-
provement in scrubbing cost and MTTD of our scheme only uses
the binary predictive results (the dotted lines when setting the size
of the high-risk area to 0) also achieves a lower scrubbing cost
and a lower MTTD compared to the predictor in SU . The reason
is that the LSTM-based predictor in our ASRC achieves higher
binary classification performance (higher AUC) than the machine
learning method the scheme SU adopted without considering the
sequential dependency in the S.M.A.R.T training data. (2) Applying
the piggyback scrubbing strategy to the full disk area. Setting
the high-risk area size to a full disk means that we do not use the
locality of sector errors to focus on high-risk areas. Although we
achieve the smallest MTTDts (the lowest Mr) in this case, we
incur unnecessary additional scrubbing cost because the MTTDts
does not change a lot compared to the results with an area size of
107. This demonstrates the effectiveness of exploiting the locality
of sector errors. It is worthy to note that even if we execute the
piggyback strategy in the full disk area, which incurs the highest
scrubbing cost, our scheme results in a lower scrubbing cost than SU
(Cr = 0.9, which is smaller than 1 in the solid lines when setting
the size of the high-risk area to the full disk). We attribute this to
the fact that the piggyback scrubbing also reduces the cost of the
sequential scrubbing strategy (as discussed in detail in SectionII-B3).
(3) The configuration of our real world large scale storage system.
Limiting the high-risk area size to 107 sectors can simultaneously
decreases the MTTD by about 80% (Mr = 0.2) and the scrubbing
cost (Cr = 0.8) by about 20%, compared to the scheme SU .

IV. CONCLUSION

In this paper, we proposed an adaptive and tiered disk scrubbing
scheme with improved MTTD and reduced scrubbing cost. Our main
contributions include: (1) we are the first to propose an Adaptive
Scrubbing Rate Controller (ASRC) to not only predict LSE disks
and non-LSE disks but also the sector risk degree to accelerate the
disk scrubbing at an adaptive (not fixed) rate based on the LSTM
algorithm at disk level, (2) we use the locality of sector errors to focus
on high-risk areas of the LSE disks at sector level, and (3) we propose
a piggyback scrubbing strategy to optimize the scrubbing strategy

(a) Cr (The lower, the better) (b) Mr (The lower, the better)

Fig. 7. The x-axis in these two figures shows the size of the high-risk
areas, the y-axis shows the ratio of improvement in scrubbing cost and
MTTD. Our scheme TS achieves lower MTTD and scrubbing cost than
SU in all cases (Cr and Mr are all smaller than 1 in the solid lines).

to further achieve higher reliability and lower scrubbing cost which
has important practical applicability in the realistic large scale data
centers. Our experiments on datasets and workloads from two real
world data centers have shown that we decrease about 80% MTTD
while decreasing 20% scrubbing cost compare to the scheme SU [1].
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